Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2242843

RESUMO

Follicular fluid is an important component of follicle growth and development. Negative effects of COVID-19 on follicular function are still open. The aim of this work was to study the features of the lipid profile of follicular fluid and evaluate the results of the in vitro fertilization (IVF) program in women after COVID-19 to identify biomarkers with prognostic potential. The study involved samples of follicular fluid collected from 237 women. Changes in the lipid composition of the follicular fluid of patients who underwent COVID-19 in mild and severe forms before entering the IVF program and women who did not have COVID-19 were studied by mass spectrometry. Several lipids were identified that significantly changed their level. On the basis of these findings, models were developed for predicting the threat of miscarriage in patients who had a severe course of COVID-19 and models for predicting the success of the IVF procedure, depending on the severity of COVID-19. Of practical interest is the possibility of using the developed predictive models in working with patients who have undergone COVID-19 before entering the IVF program. The results of the study suggest that the onset of pregnancy and its outcome after severe COVID-19 may be associated with changes in lipid metabolism in the follicular fluid.


Assuntos
COVID-19 , Líquido Folicular , Gravidez , Humanos , Feminino , Líquido Folicular/metabolismo , COVID-19/metabolismo , Folículo Ovariano , Fertilização in vitro/métodos , Lipídeos/análise
2.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2143217

RESUMO

Lipids are hydrophobic molecules involved in a plethora of biological functions; for example, they are employed for the storage of energy, serve as essential constituents of cell membranes and participate in the assembly of bilayer configuration [...].


Assuntos
Metabolismo dos Lipídeos , Lipídeos , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/análise
3.
Sci Rep ; 12(1): 11867, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1931494

RESUMO

The majority of metabolomics studies to date have utilised blood serum or plasma, biofluids that do not necessarily address the full range of patient pathologies. Here, correlations between serum metabolites, salivary metabolites and sebum lipids are studied for the first time. 83 COVID-19 positive and negative hospitalised participants provided blood serum alongside saliva and sebum samples for analysis by liquid chromatography mass spectrometry. Widespread alterations to serum-sebum lipid relationships were observed in COVID-19 positive participants versus negative controls. There was also a marked correlation between sebum lipids and the immunostimulatory hormone dehydroepiandrosterone sulphate in the COVID-19 positive cohort. The biofluids analysed herein were also compared in terms of their ability to differentiate COVID-19 positive participants from controls; serum performed best by multivariate analysis (sensitivity and specificity of 0.97), with the dominant changes in triglyceride and bile acid levels, concordant with other studies identifying dyslipidemia as a hallmark of COVID-19 infection. Sebum performed well (sensitivity 0.92; specificity 0.84), with saliva performing worst (sensitivity 0.78; specificity 0.83). These findings show that alterations to skin lipid profiles coincide with dyslipidaemia in serum. The work also signposts the potential for integrated biofluid analyses to provide insight into the whole-body atlas of pathophysiological conditions.


Assuntos
COVID-19 , Sebo , Humanos , Lipídeos/análise , Metabolômica , Saliva/metabolismo , Sebo/metabolismo , Soro/química
4.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1752773

RESUMO

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Assuntos
COVID-19/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Pulmão/metabolismo , Nucleocapsídeo/análise , SARS-CoV-2 , Adolescente , Idoso , Animais , COVID-19/patologia , Pré-Escolar , Chlorocebus aethiops , Surtos de Doenças , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Pulmão/citologia , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Nucleocapsídeo/metabolismo , Coelhos , SARS-CoV-2/ultraestrutura , Células Vero/virologia
5.
Sci Rep ; 11(1): 21633, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1503836

RESUMO

Although the serum lipidome is markedly affected by COVID-19, two unresolved issues remain: how the severity of the disease affects the level and the composition of serum lipids and whether serum lipidome analysis may identify specific lipids impairment linked to the patients' outcome. Sera from 49 COVID-19 patients were analyzed by untargeted lipidomics. Patients were clustered according to: inflammation (C-reactive protein), hypoxia (Horowitz Index), coagulation state (D-dimer), kidney function (creatinine) and age. COVID-19 patients exhibited remarkable and distinctive dyslipidemia for each prognostic factor associated with reduced defense against oxidative stress. When patients were clustered by outcome (7 days), a peculiar lipidome signature was detected with an overall increase of 29 lipid species, including-among others-four ceramide and three sulfatide species, univocally related to this analysis. Considering the lipids that were affected by all the prognostic factors, we found one sphingomyelin related to inflammation and viral infection of the respiratory tract and two sphingomyelins, that are independently related to patients' age, and they appear as candidate biomarkers to monitor disease progression and severity. Although preliminary and needing validation, this report pioneers the translation of lipidome signatures to link the effects of five critical clinical prognostic factors with the patients' outcomes.


Assuntos
COVID-19/metabolismo , Lipídeos/sangue , Soro/química , Adulto , Idoso , Biomarcadores/sangue , COVID-19/sangue , Dislipidemias/metabolismo , Feminino , Humanos , Itália , Lipidômica/métodos , Lipídeos/análise , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Prognóstico , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Esfingomielinas/sangue
6.
Sci Rep ; 11(1): 5494, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1125236

RESUMO

It is important to pay attention to the indirect effects of the social distancing implemented to prevent the spread of coronavirus disease 2019 (COVID-19) pandemic on children and adolescent health. The aim of the present study was to explore impacts of a reduction in physical activity caused by COVID-19 outbreak in pediatric patients diagnosed with obesity. This study conducted between pre-school closing and school closing period and 90 patients aged between 6- and 18-year-old were included. Comparing the variables between pre-school closing period and school closing period in patients suffering from obesity revealed significant differences in variables related to metabolism such as body weight z-score, body mass index z-score, liver enzymes and lipid profile. We further evaluated the metabolic factors related to obesity. When comparing patients with or without nonalcoholic fatty liver disease (NAFLD), only hemoglobin A1c (HbA1c) was the only difference between the two time points (p < 0.05). We found that reduced physical activity due to school closing during COVID-19 pandemic exacerbated obesity among children and adolescents and negatively affects the HbA1C increase in NAFLD patients compared to non-NAFLD patients.


Assuntos
COVID-19/patologia , Intolerância à Glucose/diagnóstico , Obesidade Infantil/diagnóstico , Adolescente , Alanina Transaminase/análise , Aspartato Aminotransferases/análise , Índice de Massa Corporal , Peso Corporal , COVID-19/virologia , Criança , Exercício Físico , Feminino , Intolerância à Glucose/complicações , Hemoglobinas Glicadas/análise , Humanos , Lipídeos/análise , Fígado/enzimologia , Masculino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Obesidade Infantil/complicações , Quarentena , SARS-CoV-2/isolamento & purificação
7.
Analyst ; 145(17): 5725-5732, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: covidwho-663353

RESUMO

The SARS-CoV-2 virus is known as the causal agent for the current COVID-19 global pandemic. The majority of COVID-19 patients develop acute respiratory distress syndrome (ARDS), while some experience a cytokine storm effect, which is considered as one of the leading causes of patient mortality. Lipids are known to be involved in the various stages of the lifecycle of a virus functioning as receptors or co-receptors that controls viral propagation inside the host cell. Therefore, lipid-related metabolomics aims to provide insight into the immune response of the novel coronavirus. Our study has focused on determination of the potential metabolomic biomarkers utilizing a Teslin® Substrate in paper spray mass spectrometry (PS-MS) for the development of a rapid detection test within 60 seconds of analysis time. In this study, results were correlated with PCR tests to reflect that the systemic responses of the cells were affected by the COVID-19 virus.


Assuntos
Infecções por Coronavirus/patologia , Metabolismo dos Lipídeos/fisiologia , Espectrometria de Massas/métodos , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , Biomarcadores/metabolismo , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Análise Discriminante , Humanos , Lipídeos/análise , Nasofaringe/virologia , Pandemias , Papel , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA